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SUMMARY

In this paper, the water sloshing in a 2D container is simulated numerically. The 2D Laplace equation
is solved by using the scaled boundary �nite element method (SBFEM) based on the linearized free
surface boundary condition. The computational results are compared with the analytical solution and
solutions from a �nite element method (FEM). It is found that the SBFEM method gives much better
results than the FEM method in the case of same mesh size. The e�ect of the oscillating frequency on
the amplitude of the surface elevation is also investigated. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The scaled boundary �nite element method (SBFEM) is a numerical method for solving the
linear di�erential equations semi-analytically. By using this method, only the boundary of
the computational domain is discretized. SBFEM reduces the dimension of the computational
domain by one comparing with the �nite element method (FEM). An analytical method is
applied in the reduced direction. The SBFEM can be applied to hyperbolic, parabolic and
elliptic problems [1–3]. It did not need the fundamental solution comparing with the boundary
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element method (BEM) and the singularity of the integration, which is encountered in BEM
can also be avoided in SBFEM.
Recently, Deeks and Cheng [4] established a SBFEM method for simulating the potential

�ow past obstacles. The results of their work proved the advantage of the SBFEM method over
the conventional �nite di�erence method (FDM). Li et al. [5] developed a scaled boundary
�nite element solution of Helmholtz equation for wave di�raction by a vertical cylinder.
In this study, a SBFEM model is developed for simulating the water sloshing in a 2D

container. The Laplace equation is solved in the scaled coordinate system. The scaled centre is
located at a point on the still water surface. The SBFEM formulation is established and solved.
An eigenvalue problem of a Hamiltonian matrix is solved. Because the present Hamiltonian
matrix contains two zero eigenvalues corresponding to two dependent eigenvectors, the Jordan
decomposition is applied to it. The model is applied to simulate the water sloshing in a
rectangular tank and that in a hemi-circular tank. The computational results are compared
with the analytical solution and those from a FEM. The numerical results show that the
predicted velocity in the direction of the scaled coordinate is much more accurate than those
from FEM because the analytical method is employed in this direction. The e�ects of the
water depth in the water container and the oscillating frequency on the amplitude of the
surface �uctuation are also investigated.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Water sloshing in a 2D container is considered. The �uid is assumed to be inviscid and
incompressible. The motion of the �uid in the container is assumed to be irrotational. There
exists a scalar potential function �, which satis�es the following Laplace equation:

∇2�=0 (1)

within the computational domain �.
Assuming the motion of the wave surface is simple harmonic in time with an angular

frequency !, we can separate out the time factor and write the velocity potential as follows:

�(x; z; t)=Re[�(x; z)e−i!t] (2)

The complex potential � in Equation (2) also satis�es the Laplace equation (Equation (1)).
In the case of the water sloshing in a 2D container (as shown in Figure 1), the linearized
boundary conditions for velocity potential are as follows:

(1) The free surface condition

@�
@z
= k0� (3)

where k0 =!2=g and g is the gravitational acceleration.
(2) At the body surface, the normal velocity of the �uid is the same as that of the

container wall

@�
@n
= vbn (4)
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Figure 1. The de�nition of the scaled coordinate: (a) rectangular tank; and (b) hemi-circular tank.

where vbn is the velocity component of the container wall in the normal direction of
the boundary.

The �uid velocity is related to the potential function as

{u}=∇� (5)

3. FORMULATION OF THE SCALED BOUNDARY FINITE ELEMENT METHOD

Figures 1(a) and (b) are de�nition of the scaled coordinate system for two examples of a
rectangular water tank and a hemi-circular one, respectively. As shown in Figure 1, we choose
a point (x0, z0) on the still surface as the scaled centre. The computational domain is in the
region (06�61) with �=0 at the scaled centre and �=1 on the boundary. The mapping
between the scaled coordinate system and the Cartesian coordinate system can be expressed
by the scaling equations

x(�; s)= x0 + �x̂(s) (6a)

z(�; s)= z0 + �ẑ(s) (6b)

where x̂(s)= x(s) − x0, ẑ(s)= z(s) − z0 are the local coordinates of the container’s boundary
relative to the scaled centre. The coordinate of a point in the domain can be uniquely rep-
resented by the scaled coordinate � and the local coordinate s along the curve S (�). To
transform the gradient operator ∇ in the xy coordinate system to that in the �s coordinate
system, the Jacobian matrix is required

[Ĵ (�; s)]=

[
x;� z;�

x; s z; s

]
=

[
1 0

0 �

]
[J (s)] (7)
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where the abbreviation [J (s)] is de�ned by

[J (s)]=

[
x̂ ẑ

x̂; s ẑ; s

]
(8)

Using Equations (7) and (8), the in�nitesimal area d� can be expressed by � and s as

d�= �|J | d� ds (9)

Applying the weighted residual method to the Laplace equation, we can obtain the following
integral equation: ∫

�
∇W (�; s) · ∇�(�; s) d�−

∫
�
W (�; s)vn d�=0 (10)

where W (x; s) is the weighting function, � represents the boundary of the computational
domain, vn is the velocity component in the normal direction of the boundary pointing out of
the �uid. The curve S(�) is discretized into several second-order three-node piecewise �nite
elements. The potential along S(�) can be approximately expressed by

�(�; s)= {N (s)}T{a(�)} (11)

where a(�) is the nodal values of the potential function, {N (s)} is the shape function vector.
In the scaled coordinate system, the gradient operator ∇ can be expressed as

∇= {b1(s)} @
@�
+
1
�
{b2(s)} @

@s
(12)

where {b1(s)} and {b2(s)} are de�ned as

{b1(s)}= 1
|J |

{
z(s);s

−x(s);s

}
; {b2(s)}= 1

|J |

{−z(s)
x(s)

}
(13)

where |J |= x(s)z(s);s − x(s);s z(s), and the subscript represents the partial di�erential with
the corresponding variable. Utilizing Equations (11) and (12), the gradient operator can be
expressed as

∇=[B1(s)] @
@�
+
1
�
[B2(s)]

@
@s

(14)

where the matrices [B1(s)] and [B2(s)] are de�ned as

[B1(s)]= {b1(s)}{N (s)}T; [B2(s)]= {b2(s)}{N (s)}T;s (15)

The weighting function W (�; s) is also interpolated by its nodal values and the shape
functions as

W (�; s)= {N (s)}T{w(�)} (16)
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Substituting Equations (14) and (16) in Equation (10) for arbitrary {w(�)}, the integration
over the domain � in Equation (10) with respect to � from �0 to �1 can be expressed as

I� =
∫
�

∇W (�; s) · ∇�(�; s) d�

=
∫ �1

�0

(
�{w(�)}T;�([E0]{a(�)};�+[E1]T{a(�)})

+ {w(�)}T
(
[E1]{a(�)};�+1� [E

2]{a(�)}
))

d� (17)

where the matrices in Equation (17) are de�ned as

[E0]=
∫
S(�)
[B1(s)]T[B1(s)]|J | ds (18a)

[E1]=
∫
S(�)
[B2(s)]T[B1(s)]|J | ds (18b)

[E2]=
∫
S(�)
[B2(s)]T[B2(s)]|J | ds (18c)

Integrating terms containing w(�);� in Equation (17) yields

I� =
∫ �1

�0
{w(�)}T

(
−�[E0]{a(�)};�� + ([E1]− [E0]− [E1]T){a(�)};� + 1� [E

2]{a(�)}
)
d�

+ {w(�1)}T(�1[E0]{a(�1)};� + [E1]T{a(�1)})− {w(�0)}T(�0[E0]{a(�0)};�
+[E1]T{a(�0)}) (19)

Along the free surface boundaries s= s0 and s= s1 the in�nitesimal integrating length can
be expressed as d�= |x(s0) − x0| d� and d�= |x(s1) − x0| d�, respectively. Utilizing the free
surface boundary condition (Equation (4)), the integration over the boundary of the domain
in Equation (10) with � from �0 to �1 can be expressed as

I� = −
∫
�
{w(�)}T{N (s)}vn d�=

∫ �1

�0
{w(�)}T[G]{a(�)} d�− {q(�0)} − {q(�1)} (20)

where

[G]= − k0({N (s0)}{N (s0)}T|x(s0)− x0|+ {N (s1)}{N (s1)}T|x(s1)− x0|) (21)

{q(�)}=
∫
S(�)

{w(�)}T{N (s)}vn d� (22)
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Finally, the integration equation (10) can be written as

−
∫ �1

�0
{w(�)}T 1

�
(�2[E0]{a(�)};��

+ �([E0]− [E1] + [E1]T){a(�)};� − ([E2] + �[G]){a(�)}) d�

+ {w(�1)}T([E0]�1[a(�1)];� + [E1]T[a(�1)]− q{�1})

− {w(�0)}T([E0]�0[a(�0)];� + [E1]T[a(�0)]− q{�0}) (23)

Since Equation (23) should be satis�ed for any set of weighting function {w(�)} and any
value of �0 and �1, the following conditions must be met:

�2[E0]{a(�)};�� + �([E0]− [E1] + [E1]T){a(�)};� − ([E2] + �[G]){a(�)}=0 (24)

q{�}=[E0]�[a(�)];� + [E1]T[a(�)] (25)

The present scaled boundary �nite element equations (Equations (24) and (25)) are similar
to those by Song and Wolf [6]. The only di�erence is the last term of Equation (24).

4. SOLUTION OF THE SCALED BOUNDARY FINITE ELEMENT EQUATIONS

By making a transformation

�=
��2

2
(26)

the derivative with respect to � can be transformed as

@
@�
=
1
��

@

@ ��
(27a)

@2

@�2
=
1
��2
@

@ ��2
− 1
��3
@

@ ��
(27b)

Using Equation (27), Equations (24) and (25) can be written as

[E0]
��2

2
{a( ��)}; �� �� +

(
[E0]
2

− [E1] + [E1]T
)
��{a( ��)}; �� − (2[E2] + ��2[G]){a( ��)}=0 (28)

{q( ��)}=[E0]
��
2
{a( ��)}; �� + [E1]T{a( ��)} (29)

From Equation (29), we can obtain

��{a( ��)}; ��= − 2[E0]−1[E1]T{a( ��)}+ 2[E0]−1{q( ��)} (30)
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Derivative of Equation (29) with respect to �� is

{q( ��)}; ��=[E0]
��
2
{a( ��)}; �� �� +

(
[E0]
2
+ [E1]T

)
{a( ��)}; �� (31)

Substituting Equation (28) in Equation (31), it yields

��{q( ��)}; ��=(−2[E1][E0]−1[E1]T+2[E2]){a( ��)}+2[E1][E0]−1{q( ��)}+ ��2[G]{a( ��)}=0 (32)

We write Equations (30) and (32) in the following form:

��{X ( ��)}; ��= − [Z]{X ( ��)} − ��2
[
0 0

−G 0

]
{X ( ��)} (33)

with the de�nition of

{X ( ��)}=
⎧⎨
⎩

{a( ��)}
{q( ��)}

⎫⎬
⎭ ; [Z]=

[
2[E0]−1[E1]T −2[E0]−1

2[E1][E0]−1[E1]T − 2[E2] −2[E1][E0]−1

]
(34)

There is an independent set of solutions grouped in the matrix [X ( ��)] of Equation (34).
The general solution {X ( ��)} can be expressed as

{X ( ��)}=[X ( ��)]{c} (35)

with {c} being the constant vector and [X ( ��)] satis�es Equation (33)

��[X ( ��)]; ��= − [Z][X ( ��)]− ��
2
[
0 0

−[G] 0

]
[X ( ��)] (36)

The eigendecomposition of the Hamiltonian matrix [Z] is as

[Z][V ]= − [V ][�] (37)

where [V] is the matrix of the eigenvectors, and the eigenvalues of [Z] consist of two groups
with opposite signs

[�]=

[−[�j]
[�j]

]
(38)

where Re(�j)60.
There is a pair of zero eigenvalues in Equation (38). The mode corresponding to zero

eigenvalue represents the constant potential in the entire �uid domain. The eigenvectors of
the two zero eigenvalues are not independent, leading to a singular matrix [V ]. The irre-
versibility of [V] make [Z] cannot be transformed to a diagonal matrix. In this study, the
Jordan decomposition is applied to the matrix [Z]

[Z][	]= − [	][ ��] (39)
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where the Jordan matrix

[ ��]=

⎡
⎢⎢⎢⎢⎢⎢⎣

−[�j]
0 −1

0

[�j]

⎤
⎥⎥⎥⎥⎥⎥⎦

(40)

Introducing the matrix [W ( ��)] de�ned as

[X ( ��)]= [	][W ( ��)] (41)

Equation (36) can be written as

��[W ( ��)]; ��=[ ��][W ( ��)]− ��2[M ][W ( ��)] (42)

where

[M ]= [	]−1
[
0 0

−[G] 0

]
[	] (43)

The solution of Equation (42) is written as the product of two square matrix functions
in ��

[W ( ��)]= [A( ��)][Y ( ��)] (44)

The �rst matrix [A( ��)] is formulated as a power series in �� as

[A( ��)]= [A0] + ��2[A1] + ��4[A2] + · · ·+ ��2k[Ak] + · · · (45)

with [A0]= [I ], and the other coe
cient matrices [Ak] to be determined. The matrix
[Y ( ��)] in Equation (44) satis�es the following ordinary di�erential equations:

��[Y ( ��)]; ��=[P
∗( ��)][Y ( ��)] (46)

where [P∗( ��)] is also a power series in ��

[P∗( ��)]= [P∗
0 ] + ��

2
[P∗
1 ] + ��4[P∗

2 ] + · · ·+ ��2k[P∗
k ] + · · · (47)

with [P∗
0 ]= [�]. Utilizing Equations (44) and (46), the derivation of [W ( ��)] can be expressed

as

[W ( ��)]; ��=([A( ��)]; �� +
1
��
[A( ��)][P∗( ��)])[Y ( ��)] (48)

Substituting Equations (44) and (48) in Equation (42) results in

��[A( ��)]; �� − [ ��][A( ��)] + [A( ��)][P∗( ��)] + ��2[M ][A( ��)]=0 (49)
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Substituting Equations (45) and (47) in Equation (49) leads to a power series of ��

[P∗
0 ]− [ ��] + ��2(−[ ��][A1] + [A1][ ��] + 2[A1] + [P∗

1 ] + [M ])

+ · · ·+ ��
2k
(−[ ��][Ak] + [Ak][ ��] + 2k[Ak] + [P∗

k ] + [Ck]) + · · · =0 (50)

where [Ck]= [M ][Ak−1] +
∑k−1

i=1 [Ai][P
∗
k−i]. To satisfy Equation (50), the coe
cients of the

power series in �� must vanish. This yields

[P∗
0 ]= [ ��] (51)

[ ��][Ak]− [Ak][ ��]− 2k[Ak]= [P∗
k ] + [Ck] k=1; 2; : : : (52)

Equation (52) can be written as the following scalar equations:

�ij[Ak]ij=[P∗
k ]ij + [Ck]ij + �ij (53)

where the coe
cients �ij and �ij are as

�ij=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�i − �j − 2k; i �= n; n+ 1 and j �= n; n+ 1
�i − 2k; i �= n; n+ 1 and j= n; n+ 1
−�j − 2k; i= n; n+ 1 and j �= n; n+ 1
−2k; i= n; n+ 1 and j= n; n+ 1

�ij=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−[Ak]i;j−1; i �= n and j= n+ 1
[Ak]i+1;j ; i= n and j �= n+ 1
−[Ak]i+1;j − [Ak]i;j−1; i= n and j= n+ 1

0 otherwise

where �j= − �j and n is the nodal point number of the computational mesh. The similar
approach by Song and Wolf [7] is applied to determine the matrices [P∗

k ] and [Ak].

[P∗
k ]ij=

{
0; �ij �=0
−[Ck]ij − �ij; �ij=0

(54)

[Ak]ij=

⎧⎪⎨
⎪⎩
[Ck]ij − �ij

�ij
; �ij �=0

arbitrary; �ij=0

(55)

The matrix [P∗( ��)] is reformulated as

[P∗( ��)]= [�] + ��[�][U ] ��−[�] (56)
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with [U ] being a upper-triangular matrix with zeros on the diagonal

[U ]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 [P∗]12 [P∗]13 · · · [P∗]1N

0 [P∗]23 : : : [P∗]2N

0 · · · [P∗]3N

. . .
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(57)

Substituting (56) in Equation (46) yields the ordinary di�erential equation for [Y ( ��)]

��[Y ( ��)]; ��=([�] + ��[�][U ] ��−[�])[Y ( ��)] (58)

By introducing a square matrix [ �Y ( ��)] which is related to the [Y ( ��)] as

[Y ( ��)]= ��−[�][ �Y ( ��)] (59)

we can get the following Euler–Cauchy equation:

��[ �Y ( ��)]; ��=[U ][ �Y ( ��)] (60)

The solution of Equation (60) is

[ �Y ( ��)]= ��[U ] = e[U ] ln ��=[I ] + [U ] ln ��+
1
2!
[U ]2(ln ��)2 + · · ·+ 1

m!
[U ]m(ln ��)m m¡N (61)

Substituting Equation (61) backwards in Equations (59), (44) and (41) results in the
analytical solution of Equation (36)

[X ( ��)]= [	][A( ��)] ��[�] ��[U ] (62)

Substituting Equation (62) in Equation (35) results in the solution of Equation (33)

{X ( ��)}=
[
[	11] [	12]

[	21] [	22]

] ⎡
⎣[A11( ��)] [A12( ��)]

[A21( ��)] [A22( ��)]

⎤
⎦

⎡
⎣ ��−[�]

��[�]

⎤
⎦

⎡
⎣[ �Y 11( ��)] [ �Y 12( ��)]

0 [ �Y 22( ��)]

⎤
⎦

{{c1}
{c2}

}
(63)

For the water sloshing in a tank, the computational domain is a bounded domain (06�61,
namely 06 ��6

√
2). As the real parts of the eigenvalues [�] are negative, if ��→ 0, ��−[�] → ∞,

the matrix [Y22( ��)] also approaches in�nity due to the logarithmic functions in Equation (61).
In order to get a �nite solution at ��=0, the constant {c2} must be zero. Then, Equation (63)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:659–678
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is written as

{a( ��)}=([	11][A11( ��)] + [	12][A21( ��)]) ��−[�][ �Y 11( ��)]{c1} (64)

{q( ��)}=([	21][A11( ��)] + [	22][A21( ��)]) ��−[�][ �Y 11( ��)]{c1} (65)

If the moving velocity of the container is known, the {q( ��)}| ��=√
2 can be calculated by

Equation (22). According to Equation (65), the constant {c1} is calculated by

{c1}=(([	21][A11( ��)] + [	22][A21( ��)]) ��−[�][ �Y 11( ��)])|−1��=√
2
{q( ��)}| ��=√

2 (66)

By utilizing Equation (12), the velocity of the �uid particle can be directly computed by

{u}=∇�= {b1(s)}{a(�)};� + 1�{b2(s)}{a(�)}s (67)

In Equation (67) the partial derivative of the potential with respect to � can be
computed by

{a(�)};�= @
��
@�

{a( ��)}; ��=
1
��
{a( ��)}; �� (68)

The {a( ��)}; �� at the nodal points can be calculate according to the di�erential of Equation
(64) with respect to �� directly.

5. NUMERICAL RESULTS

5.1. Water sloshing in containers

The model is �rstly applied to simulate the water sloshing in a rectangular water container
as shown in Figure 1(a). The water depth in the tank is H, the half-width of the tank is B.
The scaled centre is at the centre of the free water surface. Assuming the tank is oscillating
in the horizontal direction with an amplitude A and an angular frequency !. The velocity of
the tank motion can be expressed as

u=!A cos(!t); v=0 (69)

The linear analytic solution of the potential function in the �uid domain is

�(x; z)=C0
sin k0x
cos k0B

Z0(k0z) +
∞∑
m=1
Cm
sinh kmx
cosh kmB

Zm(kmz) (70)

where the vertical eigenfunctions Z0(k0z) and Zm(kmz) are

Z0(k0z)= cosh k0(z +H)=cosh k0H

Zm(kmz)= cos km(z +H)=cos kmH; m=1; 2; : : :
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Figure 2. Distribution of the surface elevation at the moment !t=2n�.

wave number k0 and km are the real roots of the dispersion relations

!2 = gk0 tanh k0H

!2 = − gkm tan kmH; m=1; 2; : : :

and the expansion coe
cients Cm’s are determined by the following equation:

Cm= − i!
km

∫ 0

−h
Zm(kmz) dz

/∫ 0

−h
Z2m(kmz) dz; (m=0; 1; 2; : : :)

In the SBFEM, only the boundary of the �uid domain is discretized into boundary �nite
elements. For the computation shown in Figure 1(a), the tank has a relative water depth of
H=B=1. The two sidewalls and the bottom of the tank are discretized into several three-node
second-order �nite elements. In order to investigate the mesh dependence of the method, three
di�erent meshes are employed. In the coarse mesh, the bottom boundary is divided into two
elements of the same size and each sidewall is divided into one element. The medium mesh
has twice the element number of the coarse mesh. And the element number of the �ne mesh
is four times of that of the coarse one.
Figure 2 shows the comparison of the SBFEM solution of the distribution of the wave

surface elevation (S) along the still water surface level with the analytical one in cases of
!=(g=B)1=2 = 1 and 2 at the moment !t=2n� (n=0; 1; 2; : : :). The water surface elevation can
be computed by the potential function at the surface by S=(@�=@t)=g=Re(i!�=g). Only the
results for x − x0¿0 are plotted in Figure 2 due to the symmetry of the con�guration. From
Figure 2(a) it can be seen that even the results from the coarse mesh agree very well with the
analytical solution when !=(g=B)1=2 = 1. It is seen from Figures 2 that the surface elevation
distribution for !=(g=B)1=2 = 1 is very di�erent from that for !=(g=B)1=2 = 2. There is some
discrepancy between the SBFEM solution from the coarse mesh and the analytical one when
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Figure 3. Distribution of the horizontal velocity along water surface at the moment !t=2n�.

!=(g=B)1=2 = 2. However, the SBFEM solutions from the medium mesh and the �ne mesh
agree well with the analytical one.
Figure 3 shows the comparison of the distribution of the horizontal velocity along the

water surface with the analytical solution. For !=(g=B)1=2 = 1, the horizontal velocity attains
its maximum value at the centre of the tank. It decreases with the increase of x and attains its
minimum value as (x− x0)=B=1. All the three meshes give good prediction of the horizontal
velocity in the case of !=(g=B)1=2 = 1. It is seen from Figure 3(b) that the SBFEM result
from the coarse mesh is not good. However, the SBFEM results from the medium and the
�ne meshes are very close to the analytical one.
Figure 4 shows the vertical velocity components along the still water surface. It is seen that

the predicted vertical velocity near the position (x−x0)=B=1 is not as good as the horizontal
velocity. The deviation of the SBFEM solution from the analytical solution decreases with the
increase of the element number. The SBFEM solution is analytical in the scaled coordinate
direction as discussed in Section 2. On the free surface z=0, the horizontal direction coincides
with the scaled coordinate. The velocity component in the normal direction of the scaled
coordinate is actually calculated by the interpolation of the nodal values of the potential
function along the curve S(�). This is the reason why the predicted horizontal velocity is
better than the vertical one. The velocity in the normal direction of the scaled coordinate can
be re�ned by further reducing the mesh size. Because only the boundary of the domain is
divided into three-node elements, the reduction of the mesh size would not increase the CPU
time very much. From Figures 2–4 it can be seen that the higher frequency of the water
tank oscillating is, the �ner mesh is needed in order to give a good prediction of the water
movement in the tank.
The SBFEM solution is also compared with the solution from the FEM. When using the

FEM to solve the problem, the computational domain is discretized into 4 × 2 eight-node
second-order �nite elements. The element number along the bed and that along the sidewall
are the same as those in the medium mesh of the SBFEM. Figures 5–7 show the comparison
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Figure 4. Distribution of the vertical velocity along the water surface at the moment !t=2n�.
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Figure 5. Comparison of the SBFEM and the FEM solutions of surface
elevation at the moment !t=2n�.

of the water surface elevation, the horizontal velocity and the vertical velocity along the water
surface, respectively. The SBFEM solutions in Figures 5–7 are from the medium mesh. It can
be seen from Figures 5–7 that the SBFEM solution is much better than that of the FEM in the
condition of same element size, especially in the high-frequency case. The SBFEM solution
is better than the FEM solution is because the analytical procedure is applied in the scaled
coordinate direction. The governing equation is actually discretized numerically only in one
dimension, which is along the boundary. The FEM method, however, discretize the governing
equation in two dimensions. The other advantage of the SBFEM method is that the number
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Figure 6. Comparison of the SBFEM and the FEM solutions of the horizontal velocity along the water
surface at the moment !t=2n�.
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Figure 7. Comparison of the SBFEM and the FEM solutions of the vertical
velocity along the water surface.

of the nodal points of meshes is much less than that of the FEM method because only the
boundary is discretized.
In order to investigate the e�ect of the oscillating frequency on the amplitude of the �uctu-

ating water surface, the distributions of the wave amplitude along the x-direction for di�erent
values of frequency are plotted in Figures 8. Figure 8(a) is of the case that the tank is oscil-
lating in the horizontal direction and Figure 8(b) is of the case that the tank is rotationally
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Figure 8. Distribution of the amplitude along x-direction for di�erent
values of !=(g=B)1=2 for a rectangular tank.

oscillating with respect to the centre point of the still water surface. The amplitude A in
Figure 8(b) is the vertical oscillating amplitude of the left and right points of the still water
surface. It is found that the oscillating frequency a�ects the wave amplitude distribution very
much. When the frequency is small, the maximum amplitude is located at the sidewall of the
tank ((x−x0)=B=1). And the amplitude of the water surface approaches to the linear relation
with x when frequency is very small. At larger value of frequency, the maximum amplitude
of water pro�le is not at the sidewall but in the inner area of the tank. It is seen from Figures
8(a) and (b) that there is a point around (x − x0)=B=0:8 in which the amplitude is close to
zero for !=(g=B)1=2 = 2. The amplitude of the water surface when the container is oscillating
in the horizontal direction is much larger than that when the container is rotational oscillating.
In the practical engineering, the water surface elevation at the sidewall is the most important

factor because the height level should not exceed the wall height. Figure 9 shows the variation
of the surface amplitude at the sidewall ((x − x0)=B=1) with the oscillating frequency for
a rectangular tank at di�erent values of H=B. Figure 9(a) is the case of tank oscillating in
the horizontal direction and Figure 9(b) is the case that the tank is oscillating with respect
to the centre point of the still water surface. It is found from Figure 9 that the resonance
occurs at resonance frequencies. It is seen that the resonance frequencies in Figure 9(a) are
identical to those in Figure 9(b). For a rectangular tank oscillating in the horizontal direction,
the resonance frequencies !r can be computed analytically by

!2r
gB
=(n+ 0:5)� tanh((n+ 0:5)�H=B); n=1; 2; 3; : : : (71)

The computed resonance frequencies are compared with the analytical ones in Table I. It
is found that the numerical results of the resonance frequencies are almost identical to the
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Figure 9. Variation of the amplitude at the sidewall with frequency for a rectangular tank: (a) oscillating
in horizontal direction; and (b) rotational oscillating with respect to centre point of still surface.

Table I. Comparison of the resonance frequencies for rectangular tank oscillating
in the horizontal direction.

n n=0 n=1 n=2

H=B 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

Analytical 1.015 1.200 1.250 2.151 2.170 2.170 2.801 2.802 2.802
Numerical 1.015 1.200 1.250 2.157 2.175 2.175 2.805 2.824 2.825

analytical ones. From Equation (71) it can be seen that for the �rst few models the dimen-
sionless resonance frequencies is relative to the tank depth. When n is large, the dimensionless
resonance frequencies of di�erent tanks are the same. The increase of the square of the dimen-
sionless resonance frequency is �. Thus, with the increases of frequency the interval between
two successive resonance frequencies decreases.
Figure 10 is the variation of the amplitude at the sidewall with the frequency for a hemi-

circular tank as shown in Figure 1(b). It is seen that the variation of the wave amplitude with
the frequency is similar with that of the rectangular tank.

5.2. Water sloshing in a tank with an obstacle on the bed

The water sloshing in a tank with a square obstacle located in the centre of the bed (as shown
in Figure 11) is simulated. The boundary length of the square obstacle is 0.4 times of the
half-width B of the tank. The still water depth in the tank is B. In order to use the SBFEM
to simulate the water sloshing, the �ow �eld is divided into three sub-domains as shown in
Figure 12. Computations are carried out for !=(g=B)1=2 = 2. Three meshes of di�erent densities
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Figure 11. Con�guration of the water sloshing in a rectangular tank with a square obstacle.
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Figure 12. Element distribution of the coarse mesh.

are applied in order to investigate the mesh dependent of the method. Figure 12 shows the
element distribution of the coarse mesh. In Section 5.1 we found that the medium mesh can
give a good prediction of the vertical velocity for !=(g=B)1=2 = 2, whereas the coarse mesh
cannot. In this example, the density of the coarse mesh is similar to that of the medium mesh
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Figure 14. Velocity distribution along the water surface at the moment !t=2n�(!=(g=B)1=2 = 2).

used in Section 5.1. The mesh density of the medium mesh and that of the �ne mesh are two
times and four times of the coarse mesh’s density shown in Figure 12, respectively. Figure 13
shows the computed water surface elevation from these three meshes. The FEM solutions are
also plotted in Figure 13 for comparison. The sizes of the coarse, medium and �ne meshes of
the FEM method are equal to their counterpart of the SBFEM method. It can be seen that the
SBFEM solutions from the three meshes are almost identical. The FEM solution from the �ne
mesh is very close to the SBFEM solution. There are some discrepancies among the FEM
solutions from the coarse, medium and �ne meshes. Figure 14 shows the comparison of the
SBFEM solution of the velocity at the water surface with the FEM solution. It can be seen
that for the velocity in the x-direction there is little di�erence among the three sets of SBFEM
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solutions. However, the di�erence among the three sets of FEM solutions are obviously. For
the velocity in the z-direction, there is little di�erence among the SBFEM solutions from the
three meshes when x=B is less than 0.8. When x=B approaches 1.0, there are some di�erences
among the three SBFEM results. FEM results from the three meshes diverge not only when
x=B approaches 1.0, but also at about x=B=0:4. From the above comparison we can see that
good results can be got even from coarse mesh by using the SBFEM method.

6. CONCLUSIONS

A scaled boundary �nite element numerical model (SBFEM) is developed for simulating the
water sloshing in a rectangular water container. In the numerical model, only the boundary
of the computational domain is discretized using the SBFEM. The SBFEM reduced the 2D
problem to a 1D one. The SBFEM results of the water surface elevation and the velocity are
compared with the analytical solution and the FEM solution. Because the analytical method is
applied in the scaled coordinate direction, it is shown that the predicted SBFEM solution of
the velocity component in the direction of the scaled coordinate is very close to the analytical
one, and is much better than the FEM solution in case of same mesh size. Whereas the
velocity components in the normal direction of the scaled coordinate is not as good as that
in the scaled coordinate direction. However, the velocity in this direction is still much better
than the FEM solution. The resonance of the water tank is also predicted by the SBFEM
model and the resonance frequencies agree very well with the analytical ones. The present
model can also applied to the cases that the shape of the water container is not rectangular in
which the analytical solution is unavailable. The model can be employed to complex domains
by using multiple sub-domains. This method is applied to simulate the water sloshing in a
rectangular tank with a square obstacle on the bed. The numerical results demonstrate that
the sub-domain method can also give better results than the FEM method.
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